

Different Patterns of the Hydrophilic Intraocular Lens Opacification.

V. Shevchyk¹, O.Chugai¹, Y. Romanenko²

¹ LLD "Shevchyk Vasyl Eye Microsurgery", Ukraine ² Head of the Laboratory, Kyiv Polytechnic Institute, Ukraine

The authors have no financial interest in the subject matter of this presentation

Purpose&Methods

Describe characteristics of hydrophilic IOL opacification

Explanted IOL was examined

- Light microscopy (MT8500 Meiji Techno, Japan)
- Scanning electron microscopy
- Energy-dispersive X-ray spectroscopy (PEM-106I Selmi, Ukraine)
- Alazarin Red staining

Results Type 1 - Tree growth rings pattern

- Separate medium and big size lesions, amount of which increase from periphery to the center of IOL
- In this case opacification starts after inappropriate YAG capsulotomy (Dark dots – absence of IOL material)

Results Type 1 - Tree growth rings pattern

Элемент	Инт.	С%	Атом.%	Καθφ.					
P K	457	21.17	25.811	25.811					
S K	3	0.23	0.267	0.267					
CI K	6	0.04	0.045	0.045					
K K	10	0.00	0.000	0.000					
Ca K	1662	78.01	73.507	73.507					
Ca L	0	0.00	0.000	0.000					
Fe K	5	0.55	0.369	0.369					
Fe L	0	0.00	0.000	0.000					

Consists : Ca – 73.51% P - 25.81% Fe – 0.37%

Results Type 2 - Night starry sky pattern

				Элемент	Инт.	C%	Атом.%	Кαэφ.
		ND 252 W		PK	231	20.21	24.706	24.706
				S K	6	0.85	0.999	0.999
				CI K	4	0.05	0.057	0.057
				K K	1	0.00	0.000	0.000
				Ca K	878	77.85	73.538	73.538
	Carlos A. B. Serand Control		States and	Ca L	0	0.00	0.000	0.000
			DAS TO DECO	Fe K	5	1.03	0.700	0.700
	Station and a state			Fe L	0	0.00	0.000	0.000
				•				
· · · ·	WD=15.9mm	20.00kV	x1.00k 50um					

- Separate small size round lesions, that aggregate in big opacification zone
- Consists : Ca 73.54% P 24.71% Fe 0.7%

Results Type 3 - Mosaic pattern

- Separate small size square lesions, that aggregate in big opacification zone
- Consists : Ca 77,51% P 22.49% Fe 0.7%

Results Type 4 - Frozen lava pattern

 One big zone of opacification that consist from tightly packed "cells" with clear demarcation on high magnification images

Consists : Ca - 70,47% P - 28.61% Fe - 0.9%

Results Type 5 - Fish caviar pattern

- One big zone of opacification, that totally covered IOL surface in the center and with some free clear space on periphery
- Most "cells" have bright white center
- Consists : Ca 77,83% P 22.17% Fe 0.8%

Alazarin Red staining

Alizarin red staining approved the presence of calcium in all cases of opacification

Conclusion

The main reason of hydrophilic intraocular lens opacification is deposition of calcium and phosphorus (in 3 to 1 ratio) in affected zone that's why we need:

- To find the way of prevention this deposition
- To develop in vivo method of dissolving of calcium in already opacificated IOL